Acute renal response to LPS: impaired arginine production and inducible nitric oxide synthase activity.
نویسندگان
چکیده
We have previously shown in rats that lipopolysaccharide (LPS) causes both decreased renal perfusion and kidney arginine production before nitric oxide (NO) synthesis, resulting in a >30% reduction in plasma arginine. To clarify the early phase effects of LPS, we asked the following two questions: 1) is the rapid change in renal arginine production after LPS simply the result of decreased substrate (i.e., citrulline) delivery to the kidney or due to impaired uptake and conversion and 2) is the systemic production of NO limited by plasma arginine availability after LPS? Arterial and renal vein plasma was sampled at 30-min intervals from anesthetized rats with or without citrulline or arginine (2 micromol.min(-1).kg(-1) iv) a dose with no effect on MAP, renal function, or NO production. Exogenous citrulline was quickly converted to arginine by the kidney, resulting in plasma levels similar to equimolar arginine infusion. Also, the increase in citrulline uptake resulted primarily from increased filtered load and reabsorption. In a separate series, citrulline was infused after LPS administration, verifying that citrulline uptake and conversion persists during impaired kidney function. Last, in rats given LPS, the elevation of plasma arginine had no discernable impact on mean arterial pressure, kidney function, or systemic NO production. This work demonstrates how arginine synthesis is normally "substrate limited" and explains how impaired kidney perfusion quickly results in decreased plasma arginine. However, contrary to in vitro studies, the significant reduction in extracellular arginine during the early phase response to LPS in vivo is not functionally rate limiting for NO production.
منابع مشابه
EXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE (iNOS) STIMULATED BY HYDROGEN PEROXIDE IN HUMAN ENDOTHELIAL CELLS
Inducible nitric oxide synthase (iNOS) gene expresses a calcium calmudolin-independent enzyme which can catalyse NO production from L-arginine. The induction of iNOS activity has been demonstrated in a wide variety of cell types under stimulation with cytokines and lipopoly saccharide (LPS). Previous studies indicated that all nitric oxide synthases (NOS) activated in human umbilical vein endot...
متن کاملEffect of Neutrophils on Nitric Oxide Production from Stimulated Macrophages
Background: During the initial phase of an infection, there is an upregulation of inducible nitric oxide synthase in the macrophages for the production of nitric oxide. This is followed by the recruitment of polymorphonuclear leukocytes (neutrophils) which release arginase. Arginase competes with inducible nitric oxide synthase for a common substrate L-arginine. Objective: To investigate whethe...
متن کاملProduction of arginine by the kidney is impaired in a model of sepsis: early events following LPS.
Lipopolysaccharide (LPS) is used experimentally to elicit the innate physiological responses observed in human sepsis. We have previously shown that LPS causes depletion of plasma arginine before inducible nitric oxide synthase (iNOS) activity, indicating that changes in arginine uptake and/or production rather than enhanced consumption are responsible. Because the kidney is the primary source ...
متن کاملThe role of inducible nitric oxide synthase in lipopolysaccharide-mediated hyporeactivity to vasoconstrictors differs among isolated rat arteries.
We investigated whether organ-specific differences exist in the role of inducible nitric oxide synthase (iNOS) in hyporeactivity to vasoconstrictors following 20 h in vitro exposure of isolated superior mesenteric, renal, hepatic and coronary arteries from the rat to bacterial lipopolysaccharide (LPS). LPS attenuated contraction in response to depolarizing KCl in all arteries. Maximum contracti...
متن کاملNitric oxide and the bioactivities
Nitric oxide (NO), previously known as Endothelium-Derived Relaxing Factor (EDRF) is involved in a wide range of physiological and pathophysiological mechanisms. It is synthesized endogenously by the enzymes Nitric Oxide Synthase (NOS) in specialized tissues from its precursor L-arginine, yielding L-citrulline as a byproduct. It is released by a family of isoenzymes, viz., the endothelial (eNOS...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 291 3 شماره
صفحات -
تاریخ انتشار 2006